Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Gonadectomy and dehydroepiandrosterone (DHEA) do not modulate disease progression in the G93A mutant SOD1 rat model of amyotrophic lateral sclerosis.

Epidemiological studies have shown a higher incidence of amyotrophic lateral sclerosis (ALS) in men than women. Interestingly, there are clear gender differences in disease onset and progression in rodent models of familial ALS overexpressing mutated human superoxide dismutase-1 (SOD1-G93A). In the present study we sought to determine whether the alterations of serum steroid levels by gonadectomy or chronic treatment of neuroprotective neurosteroids can modulate disease onset and progression in a rat model of ALS (SOD1-G93A transgenic rats). Presymptomatic SOD1-G93A rats were gonadectomized or treated with a neurosteroid dehydroepiandrosterone (DHEA) using silastic tubing implants. Disease onset and progression of the animals were determined by the routine analyses of locomotor testing using the Basso-Beattie-Bresnahan (BBB) score. Although sexual dimorphism was observed in intact and gonadectomized SOD1-G93A rats, there was no significant effect of gonadectomy on disease onset and progression. DHEA treatment did not alter disease progression or survival in SOD1-G93A rats. Our results indicate that gonadal steroids or neurosteroids are not one of the possible modulators for the occurrence or disease progression in a rat model of ALS. Further analysis will be necessary to understand how sexual dimorphism is involved in ALS disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app