Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration.

PURPOSE: Indeterminate thyroid lesions on fine needle aspiration (FNA) harbor malignancy in about 25% of cases. Hemi- or total thyroidectomy has, therefore, been routinely advocated for definitive diagnosis. In this study, we analyzed miRNA expression in indeterminate FNA samples and determined its prognostic effects on final pathologic diagnosis.

EXPERIMENTAL DESIGN: A predictive model was derived using 29 ex vivo indeterminate thyroid lesions on FNA to differentiate malignant from benign tumors at a tertiary referral center and validated on an independent set of 72 prospectively collected in vivo FNA samples. Expression levels of miR-222, miR-328, miR-197, miR-21, miR-181a, and miR-146b were determined using reverse transcriptase PCR. A statistical model was developed using the support vector machine (SVM) approach.

RESULTS: A SVM model with four miRNAs (miR-222, miR-328, miR-197, and miR-21) was initially estimated to have 86% predictive accuracy using cross-validation. When applied to the 72 independent in vivo validation samples, performance was actually better than predicted with a sensitivity of 100% and specificity of 86%, for a predictive accuracy of 90% in differentiating malignant from benign indeterminate lesions. When Hurthle cell lesions were excluded, overall accuracy improved to 97% with 100% sensitivity and 95% specificity.

CONCLUSIONS: This study shows that that the expression of miR-222, miR-328, miR-197, and miR-21 combined in a predictive model is accurate at differentiating malignant from benign indeterminate thyroid lesions on FNA. These findings suggest that FNA miRNA analysis could be a useful adjunct in the management algorithm of patients with thyroid nodules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app