Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability.

Hypoxic cells have been linked to genetic instability and tumor progression. However, little is known about the exact relationship between DNA repair and genetic instability in hypoxic cells. We therefore tested whether the sensing and repair of DNA double-strand breaks (DNA-dsbs) is altered in irradiated cells kept under continual oxic, hypoxic or anoxic conditions. Synchronized G0-G1 human fibroblasts were irradiated (0-10 Gy) after initial gassing with 0% O(2) (anoxia), 0.2% O(2) (hypoxia) or 21% O(2) (oxia) for 16 hours. The response of phosphorylated histone H2AX (γ-H2AX), phosphorylated ataxia telangiectasia mutated [ATM(Ser1981)], and the p53 binding protein 1 (53BP1) was quantified by intranuclear DNA repair foci and western blotting. At 24 hours following DNA damage, residual γ-H2AX, ATM(Ser1981) and 53BP1 foci were observed in hypoxic cells. This increase in residual DNA-dsbs under hypoxic conditions was confirmed using neutral comet assays. Clonogenic survival was also reduced in chronically hypoxic cells, which is consistent with the observation of elevated G1-associated residual DNA-dsbs. We also observed an increase in the frequency of chromosomal aberrations in chronically hypoxic cells. We conclude that DNA repair under continued hypoxia leads to decreased repair of G1-associated DNA-dsbs, resulting in increased chromosomal instability. Our findings suggest that aberrant DNA-dsb repair under hypoxia is a potential factor in hypoxia-mediated genetic instability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app