Add like
Add dislike
Add to saved papers

Surveillance in Eastern India (2007-2009) revealed reassortment event involving NS and PB1-F2 gene segments among co-circulating influenza A subtypes.

BACKGROUND: Influenza A virus encodes for eleven proteins, of which HA, NA, NS1 and PB1-F2 have been implicated in viral pathogenicity and virulence. Thus, in addition to the HA and NA gene segments, monitoring diversity of NS1 and PB1-F2 is also important.

METHODS: 55 out of 166 circulating influenza A strains (31 H1N1 and 24 H3N2) were randomly picked during 2007-2009 and NS and PB1-F2 genes were sequenced. Phylogenetic analysis was carried out with reference to the prototype strains, concurrent vaccine strains and other reference strains isolated world wide.

RESULTS: Comparative analysis of both nucleotide and deduced amino acid sequences, revealed presence of NS gene with A/PR/8/34(H1N1)-like mutations (H4N, Q21R, A22V, K44R, N53D, C59R, V60A, F103S and M106I) in both RNA-binding and effector domain of NS1 protein, and G63E, the HPAI-H5N1-like mutation in NEP/NS2 of five A/H1N1 strains of 2007 and 2009. NS1 of other A/H1N1 strains clustered with concurrent A/H1N1 vaccine strains. Of 31 A/H1N1 strains, five had PB1-F2 similar to the H3N2 strains; six had non-functional PB1-F2 protein (11 amino acids) similar to the 2009 pandemic H1N1 strains and rest 20 strains had 57 amino acids PB1-F2 protein, similar to concurrent A/H1N1 vaccine strain. Interestingly, three A/H1N1 strains with H3N2-like PB1-F2 protein carried primitive PR8-like NS gene. Full gene sequencing of PB1 gene confirmed presence of H3N2-like PB1 gene in these A/H1N1 strains.

CONCLUSION: Overall the study highlights reassortment event involving gene segments other than HA and NA in the co-circulating A/H1N1 and A/H3N2 strains and their importance in complexity of influenza virus genetics. In contrast, NS and PB1-F2 genes of all A/H3N2 eastern India strains were highly conserved and homologous to the concurrent A/H3N2 vaccine strains suggesting that these gene segments of H3N2 viruses are evolutionarily more stable compared to H1N1 viruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app