Add like
Add dislike
Add to saved papers

A novel regulatory role of the Rnf complex of Azoarcus sp. strain BH72.

The superfamily of P(II) proteins contains the most widely distributed signalling proteins in nature. Remarkable is the variety of targets whose activity is affected by protein-protein interactions. Here we identified as novel partner for interaction with GlnK an Rnf complex, known to couple the energy of ion transport to reduce ferredoxins. The endophytic diazotrophic betaproteobacterium Azoarcus sp. strain BH72 harbours two rnf-like clusters in the genome, of which only the rnf1 cluster was induced under conditions of N(2) fixation under control of the transcriptional activator NifA. Rapid inactivation ('DraT-independent switch off') of nitrogenase activity upon ammonium upshift was dependent on the Rnf1 complex. Membrane sequestration of GlnK in steady-state N-surplus conditions occurred in its unmodified form, signalling N-surplus, and was dependent on presence of the Rnf1 complex, suggesting physical interaction. In vitro binding studies by Far-Western analysis indicated interactions of RnfC1 with specifically GlnK but not with GlnB. As ammonium upshift led to decreased activity of the Rnf1 complex in membranes, it might be inactivated by GlnK binding, leading to an interruption of electron flow to nitrogenase and thus a rapid, DraT-independent nitrogenase switch off. Our data imply a hitherto unknown interaction partner for a P(II)-like protein and an additional process under its control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app