Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction.

Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can improve image-quality in X-ray computed tomography (CT). However, the huge dynamic range of the statistical weights leads to a highly shift-variant inverse problem making it difficult to precondition and accelerate existing iterative algorithms that attack the statistical model directly. We propose to alleviate the problem by using a variable-splitting scheme that separates the shift-variant and ("nearly") invariant components of the statistical data model and also decouples the regularization term. This leads to an equivalent constrained problem that we tackle using the classical method-of-multipliers framework with alternating minimization. The specific form of our splitting yields an alternating direction method of multipliers (ADMM) algorithm with an inner-step involving a "nearly" shift-invariant linear system that is suitable for FFT-based preconditioning using cone-type filters. The proposed method can efficiently handle a variety of convex regularization criteria including smooth edge-preserving regularizers and nonsmooth sparsity-promoting ones based on the l(1)-norm and total variation. Numerical experiments with synthetic and real in vivo human data illustrate that cone-filter preconditioners accelerate the proposed ADMM resulting in fast convergence of ADMM compared to conventional (nonlinear conjugate gradient, ordered subsets) and state-of-the-art (MFISTA, split-Bregman) algorithms that are applicable for CT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app