Journal Article
Review
Add like
Add dislike
Add to saved papers

Adenosine monophosphate-activated protein kinase: a central regulator of metabolism with roles in diabetes, cancer, and viral infection.

Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated by metabolic stresses that inhibit catabolic ATP production or accelerate ATP consumption. Once activated, AMPK switches on catabolic pathways, generating ATP, while inhibiting cell growth and proliferation, thus promoting energy homeostasis. AMPK is activated by the antidiabetic drug metformin, and by many natural products including "nutraceuticals" and compounds used in traditional medicines. Most of these xenobiotics activate AMPK by inhibiting mitochondrial ATP production. AMPK activation by metabolic stress requires the upstream kinase, LKB1, whose tumor suppressor effects may be largely mediated by AMPK. However, many tumor cells appear to have developed mechanisms to reduce AMPK activation and thus escape its growth-restraining effects. A similar phenomenon occurs during viral infection. If we can establish how down-regulation occurs in tumors and virus-infected cells, there may be therapeutic avenues to reverse these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app