Add like
Add dislike
Add to saved papers

CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15.

CO(2) capture from the atmosphere and concentration by cyclic adsorption-desorption processes are studied for the first time. New high microporosity materials, zeolite types Li-LSX and K-LSX, are compared to zeolite NaX and amine-grafted SBA-15 with low amine content. Breakthrough performance showed low silica type X (LSX) to have the most promise for application in dry conditions and capable of high space velocities of at least 63,000 h(-1), with minimal spreading of the CO(2) breakthrough curve. Amine-grafted silica was the only adsorbent able to operate in wet conditions, but at a lower space velocity of 1500 h(-1), due to slower uptake rates. The results illustrate that the uptake rate is as important as the equilibrium adsorbed amount in determining the cyclic process performance. Li-LSX was found to have double the capacity of zeolite NaX at atmospheric conditions, also higher than all other reported zeolites. It is further demonstrated that by using a combined temperature and vacuum swing cycle, the CO(2) concentration in the desorption product is >90% for all adsorbents in pellet form. This is the first report of such high CO(2) product concentrations from a single cycle, using atmospheric air.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app