Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions.

Multi-walled carbon nanotubes (MWCNT) were employed for the sorption of olaquindox (OLA) from aqueous solution. A detailed study of the adsorption process was performed by varying pH, ionic strength, sorbent amount, sorption time and temperature. The adsorption mechanism is probably the non-electrostatic π-π dispersion interaction and hydrophobic interaction between OLA and MWCNT. The adsorption efficiency could reach 99.7%, suggesting that MWCNT is excellent adsorbents for effective OLA removal from water. OLA adsorption kinetics were found to be very fast and equilibrium was reached within 2.0 min following the pseudo-second-order model with observed rate constants (k) of 0.169-1.048 g mg(-1)min(-1) (at varied temperatures). The overall rate process appeared to be influenced by both external mass transfer and intraparticle diffusion, but mainly governed by intraparticle diffusion. A rapid initial adsorption behavior occurred within a short period of time in this adsorption system. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 133.156 mg g(-1) (293 K) of OLA on MWCNT. The mean energy of adsorption was calculated to be 0.124 kJ mol(-1) (293 K) from the Dubinin-Radushkevich adsorption isotherm. Moreover, the thermodynamic parameters showed the spontaneous, exothermic and physical nature of the adsorption process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app