Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain.

In addition to a constitutive water channel activity, several studies suggest Aquaporin-1 (AQP1) functions as a nonselective monovalent cation channel activated by intracellular cGMP, although variability in responsiveness between preparations has led to controversy in the field. Data here support the hypothesis that responsiveness of the AQP1 ionic conductance to cGMP is governed by tyrosine phosphorylation. Wild-type and mutant human AQP1 channels expressed in Xenopus laevis oocytes were characterized by two-electrode voltage clamp and optical osmotic swelling analyses. Quadruple mutation by site-directed mutagenesis of barrier hydrophobic residues (Val50, Leu54, Leu170, Leu174) to alanines in the central pore induced inward rectification of the ionic current and shifted reversal potential by approximately +10 mV, indicating increased permeability of tetraethylammonium ion. Introduction of cysteine at lysine 51 in the central pore (K51C) in a cysteine-less template created new sensitivity to block of the conductance by mercuric ion. Mutations of candidate consensus sites and pharmacological manipulation of serine and threonine phosphorylation did not alter cGMP-dependent responses; however, mutation of tyrosine Y253C or pharmacological dephosphorylation prevented ion channel activation. Modification of Y253C by covalent addition of a negatively charged group [2-sulfonatoethyl methanethiosulfonate sodium salt (MTSES)] rescued the cGMP-activated conductance response, an effect reversed by dithiothreitol. Results support the proposal that phosphorylation of tyrosine Tyr253 in the carboxyl terminal domain, confirmed by Western blot, acts as a master switch regulating responsiveness of AQP1 ion channels to cGMP, and the tetrameric central pore is the ion permeation pathway. These findings advance resolution of a standing controversy and expand our understanding of AQP1 as a multifunctional regulated channel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app