JOURNAL ARTICLE

Electronic structures of low-lying Bu excited states in trans-oligoenes: Pariser-Parr-Pople and ab initio calculations

Dawei Zhang, Chungen Liu
Journal of Chemical Physics 2011 October 7, 135 (13): 134117
21992292
Two lowest-lying excited singlets with B(u) symmetry of all-trans-oligoenes, the well-known ionic 1(1)B(u)(+) state as well as the "hidden" ionic-covalent-mixed 1(1)B(u)(-) state, are calculated within both the Pariser-Parr-Pople (PPP) model at full configuration interaction (FCI) level and ab initio methods. The vertical excitation energies as well as wavefunctions from PPP-FCI calculations are found to be in good agreement with those from high-level multi-reference methods, such as multi-reference complete active space self-consistent field (CASSCF) with second order perturbative corrections (CASPT2), multi-reference Møller-Plesset perturbation theory (MRMP), and complete active space valence bond theory (CASVB). The oscillator strengths from PPP calculation are in good agreement with spectroscopy experiments. The relatively small oscillator strength of 1(1)B(u)(-) is due to the approximate electron-hole symmetry of this state. In addition, the bond lengths in both states are found to show remarkable relativity with the bond orders calculated with ground state geometries, which suggests a possible strategy for initial guess in geometry optimization of excited states.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21992292
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"