Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/- mouse and human plaque components stiffnesses

Jacques Ohayon, Nicolas Mesnier, Alexis Broisat, Jakub Toczek, Laurent Riou, Philippe Tracqui
Biomechanics and Modeling in Mechanobiology 2012, 11 (6): 801-13
The structure of mouse atherosclerotic lesions may differ from that of humans, and mouse atherosclerotic plaques do not rupture except in some specific locations such as the brachiocephalic artery. Recently, our group was the first to observe that the amplitudes of in vivo stresses in ApoE-/- mouse aortic atherosclerotic lesions were much lower and differed from those found in a previous work performed on human lesions. In this previous preliminary work, we hypothesized that the plaque mechanical properties (MP) may in turn be responsible for such species differences. However, the limited number of human samples used in our previous comparative study was relevant but not sufficient to broadly validate such hypothesis. Therefore, in this study, we propose an original finite element strategy that reconstructs the in vivo stress/strain (IVS/S) distributions in ApoE-/- artherosclerotic vessels based on cross substitution of ApoE-/- mouse and human plaque components stiffnesses and including residual stress/strain (RS/S). Our results: (1) showed that including RS/S decreases by a factor 2 the amplitude of maximal IVS/S, and more importantly, (2) demonstrated that the MP of the ApoE-/- plaque constituents are mainly responsible for the low level-compared with human-of intraplaque stress in ApoE-/- mouse aortic atherosclerotic lesions (8.36 ± 2.63 kPa vs. 182.25 ± 55.88 kPa for human). Our study highlights that such differences in the distribution and amplitude of vessel wall stress might be one key feature for explaining for the difference in lesion stability between human coronary and mouse aortic lesions.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"