Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The role of amine surface density in carbon dioxide adsorption on functionalized mixed oxide surfaces.

ChemSusChem 2011 November 19
Supported amines are considered as adsorbents to replace aqueous amines for carbon capture and for CO(2) capture/conversion into chemicals. Here, amines are grafted to SiO(2) or Ti-SiO(2) by using aminopropyl triethoxysilane (APTES) or (3-triethoxysilylpropyl)-tert-butylcarbamate (TESPtBC) and then removing the carbamate group introduced by the latter by mild heating to 'deprotect' the amine. Structures are verified by using (13) C cross polarization magic angle spinning (CP/MAS) NMR spectroscopy, acid titration, thermogravimetric analysis, and elemental analysis. Diffuse reflectance UV/Visible spectroscopy shows that amines from APTES coordinate directly to Ti cations, whereas Ti cations remain coordinatively unsaturated after grafting of TESPtBC and deprotection. CO(2) chemisorption is studied as a function of amine precursor, average surface density, and the presence of Ti. CO(2) uptake increases from <0.02 CO(2) per amine for as-synthesized TESPtBC materials to only approximately 0.05 CO(2) per amine for the isolated amines present after deprotection. In contrast, clustered amines from APTES chemisorb up to approximately 0.35 CO(2) per amine. Cooperative ammonium carbamates form preferentially above an apparent local density of 0.6 amines per nm(2) from APTES, but do not form even up to 0.9 amines per nm(2) for TESPtBC-derived materials. This suggests that the true local surface density form APTES is underestimated by as much as 150 %. CO(2) uptake falls to <0.01 CO(2) per amine for ATPES on TiSiO(2), but uptake is less affected for the 'protected' TESPtBC precursor. These results show that TESPtBC may be a viable precursor for applications in acid-base cooperative CO(2) conversion catalysts, and that variation in the local amine surface density and the chemistry of the underlying support may account for some of the large variability in reported CO(2) capacities of supported amine materials in literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app