Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis

L Ben Mahmoud, H Ghozzi, A Kamoun, A Hakim, H Hachicha, S Hammami, Z Sahnoun, N Zalila, H Makni, K Zeghal
Pathologie-biologie 2012, 60 (5): 324-30

SETTING: Antituberculosis drug-induced hepatitis attributed to isoniazide (INH) is one of the most prevalent drug-induced liver injuries. INH is metabolized by hepatic N-acetyltransferase 2 (NAT2) to form hepatotoxins.

AIM: To evaluate whether polymorphism of the NAT2 gene was associated with antituberculosis drug-induced hepatotoxicity in Tunisian patients.

METHODS: A total of 66 patients with tuberculosis (TB) who received anti-TB treatment were followed prospectively. Their NAT2 genotype was determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We identified three single nucleotide polymorphisms (SNPs); 481C to T (NAT2*5B), 590G to A (NAT2*6A) and 857G to A (NAT2*7B). Univariate analysis and logistic regression analysis were used to evaluate the risk factors of isoniazid-induced hepatitis.

RESULTS: Fourteen patients (21.2%) were diagnosed with anti-TB drug-induced hepatitis. None of the rapid acetylators-type patients have expressed serum aminotransferase elevation. Among patients with hepatotoxicity, slow acetylators-type patients had a higher risk of hepatotoxicity than intermediate acetylators (21.4% vs. 78.6%, P=0.01). Statistical analysis revealed that the frequency of a variant diplotypes, NAT2*5B/5B and NAT2*6A/6A, were significantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity (P=0.01, odds ratio [OR]=7.6 and P=0.029, OR=15, respectively). By contrast, the frequency of the rapid acetylation NAT2*4 allele was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P=0.02, OR=0.18). Moreover, 590G/G genotype was associated with decreased hepatotoxicity (P=0.01); by contrast, homozygous point mutation at position 481 and 590 were associated with a higher risk of hepatotoxicity (P=0.01).

CONCLUSION: Our results suggest that the slow-acetylator status of NAT2 is risk factor for INH-induced hepatotoxicity. Moreover, diplotypes, NAT2*5B/5B, NAT2*6A/6A, 481T/T and 590A/A, are useful new biomarkers for predicting anti-TB drug-induced hepatotoxicity.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"