Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of normal phase-high performance liquid chromatography-atmospherical pressure chemical ionization-mass spectrometry method for the study of 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine hydrolytic degradation.

In the field of nuclear waste management, the 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine (CyMe(4)BTBP) is a polycyclic N-based molecule eligible to remove actinides from spent nuclear fuel by liquid-liquid extraction processes. In such processes, the organic phase containing the extracting molecules will undergo hydrolysis and radiolysis, involving degradation products. The purpose of this work was to develop a normal phase chromatography (NP-HPLC) coupled to atmospherical pressure chemical ionisation-mass spectrometry (APCI-MS) method to separate and identify degradation products of CyMe(4)BTBP dissolved in octanol, submitted to HNO(3) hydrolysis. 1 mol L(-1) HNO(3) hydrolysis conditions were used regarding the selective actinides extraction (SANEX) process, while 3 mol L(-1) HNO(3) conditions were applied for the group actinide extraction (GANEX) process. The first step consisted in optimizing the chromatographic separation conditions using a diode array detection (DAD). Retention behavior of a non hydrolyzed mixture of N,N'-dimethyl-N,N'-dioctyl-hexyloxyethyl-malonamide (DMDOHEMA), a malonamide used in the SANEX process to increase the kinetic of extraction, and CyMe(4)BTBP were investigated on diol-, cyano-, and amino-bonded stationary phases using different mobile phase compositions. These latter were hexane with different polar modifiers, i.e. dioxane, isopropanol, ethanol and methylene chloride/methanol. The different retention processes in NP-HPLC were highlighted when using various stationary and mobile phases. The second step was the setting-up of the NP-HPLC-APCI-MS coupling and the use of the low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) of the precursor protonated molecules that allowed the separation and the characterization of the main hydrolytic CyMe(4)BTBP degradation product under a 3 mol L(-1) HNO(3) concentration. Investigation of the CID-MS/MS fragmentation pattern was used to suggest the potential ways leading to this hydrolysis degradation product. This NP-HPLC-APCI-MS method development is described for the first time for the CyMe(4)BTBP and should provide separation methods regarding the analysis of polycyclic N-based extracting molecules and more generally for the investigation of the organic phase coming from liquid-liquid extraction processes used in nuclear fuel reprocessing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app