Add like
Add dislike
Add to saved papers

Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells.

The oxygen reduction reaction (ORR) and diffusion mechanisms on 25% Sr-doped LaMnO(3) (LSM) cathode materials as well as their kinetic behavior have been studied by using spin-polarized density functional theory (DFT) calculations. Bader charge and frequency analyses were carried out to identify the oxidation state of adsorbed oxygen species. DFT and molecular dynamics (MD) results show that the fast O(2) adsorption/reduction process via superoxide and peroxide intermediates is energetically favorable on the Mn site rather than on the Sr site. Furthermore, the higher adsorption energies on the Mn site of the (110) surface compared to those on the (100) surface imply that the former is more efficient for O(2) reduction. Significantly, we predict that oxygen vacancies enhance O(2) reduction kinetics and that the O-ion migration through the bulk is dominant over that on the surface of the LSM cathode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app