Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies.

T-cell receptor (TCR) gene therapy enables for the rapid creation of antigen-specific T cells from mice of any strain and represents a valuable tool for preclinical immunotherapy studies. Here, we describe the superiority of γ-retroviral vectors compared with lentiviral vectors for transduction of murine T cells and surprisingly illustrate robust gene-transfer into phenotypically naive/memory-stem cell like (TN/TSCM; CD62L(hi)/CD44(low)) and central memory (TCM; CD62L(hi)/CD44(hi)) CD8+ T cells using murine stem cell-based γ-retroviral vectors (MSGV1). We created MSGV1 vectors for a major histocompatibility complex-class I-restricted TCR specific for the melanocyte-differentiation antigen, glycoprotein 100 (MSGV1-pmel-1), and a major histocompatibility complex-class II-restricted TCR specific for tyrosinase-related protein-1 (MSGV1-TRP-1), and found that robust gene expression required codon optimization of TCR sequences for the pmel-1 TCR. To test for functionality, we adoptively transferred TCR-engineered T cells into mice bearing B16 melanomas and observed delayed growth of established tumors with pmel-1 TCR engineered CD8+ T cells and significant tumor regression with TRP-1 TCR transduced CD4 T cells. We simultaneously created lentiviral vectors encoding the pmel-1 TCR, but found that these vectors mediated low TCR expression in murine T cells, but robust gene expression in other murine and human cell lines. These results indicate that preclinical murine models of adoptive immunotherapies are more practical using γ-retroviral rather than lentiviral vectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app