Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rosuvastatin improves endothelial function in db/db mice: role of angiotensin II type 1 receptors and oxidative stress.

BACKGROUND AND PURPOSE: HMG-CoA reductase inhibitors, statins, with lipid-reducing properties combat against atherosclerosis and diabetes. The favourable modulation of endothelial function may play a significant role in this effect. The present study aimed to investigate the cellular mechanisms responsible for the therapeutic benefits of rosuvastatin in ameliorating diabetes-associated endothelial dysfunction.

EXPERIMENTAL APPROACH: Twelve-week-old db/db diabetic mice were treated with rosuvastatin at 20 mg·kg⁻¹ ·day⁻¹ p.o.for 6 weeks. Isometric force was measured in isolated aortae and renal arteries. Protein expressions including angiotensin II type 1 receptor (AT₁R), NOX4, p22(phox) , p67(phox) , Rac-1, nitrotyrosine, phospho-ERK1/2 and phospho-p38 were determined by Western blotting, while reactive oxygen species (ROS) accumulation in the vascular wall was evaluated by dihydroethidium fluorescence and lucigenin assay.

KEY RESULTS: Rosuvastatin treatment of db/db mice reversed the impaired ACh-induced endothelium-dependent dilatations in both renal arteries and aortae and prevented the exaggerated contractions to angiotensin II and phenylephrine in db/db mouse renal arteries and aortae. Rosuvastatin reduced the elevated expressions of AT₁R, p22(phox) and p67(phox) , NOX4, Rac1, nitrotyrosine and phosphorylation of ERK1/2 and p38 MAPK and inhibited ROS production in aortae from db/db mice.

CONCLUSIONS AND IMPLICATIONS: The vasoprotective effects of rosuvastatin are attributed to an increase in NO bioavailability, which is probably achieved by its inhibition of ROS production from the AT₁R-NAD(P)H oxidase cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app