Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.

Optics Express 2011 January 32
We present an experimental and computational investigation of the optical properties of thin metallic films periodically perforated with nanometric apertures and show that high transmission through such a structure is attributable to the localized surface plasmon (LSP) resonances of the aperture. The periodicity-related optical phenomena, including Wood's anomaly and surface plasmon polariton (SPP) excitation, interfere with LSPs and generate Fano resonances with asymmetric spectral profiles. The transmission maximum of the Fano profile is related to the constructive interference between the LSP field and diffracted light propagating along the surface; the transmission minimum of the Fano profile is caused by the destructive interference between LSPs and SPPs. The study confirms the negative role of SPP in transmission through the structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app