Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photodynamical simulations of cytosine: characterization of the ultrafast bi-exponential UV deactivation.

Deactivation of UV-excited cytosine is investigated by non-adiabatic dynamics simulations, optimization of conical intersections, and determination of reaction paths. Quantum chemical calculations are performed up to the MR-CISD level. Dynamics simulations were performed at multiconfigurational level with the surface hopping method including four electronic states. The results show the activation of four distinct reaction pathways at two different subpicosecond time scales and involving three different conical intersections. Most trajectories relax to a minimum of the S(1) state and deactivate with a time constant of 0.69 ps mainly through a semi-planar conical intersection along the n(O)π* surface. A minor fraction deactivate along ππ* regions of the S(1) surface. Sixteen percent of trajectories do not relax to the minimum and deactivate with a time constant of only 13 fs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app