Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer.

BACKGROUND: Specific mutations of the epidermal growth factor receptor (EGFR) gene are predictive for favorable response to tyrosine kinase inhibitors (TKIs) and are associated with a good prognosis. In contrast, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation has been shown to predict poor response to such therapy. Nevertheless, tumor that initially responds to EGFR-TKIs almost inevitably becomes resistant later. Other mechanisms of resistance to EGFR inhibitors could involve activating mutations of the other main EGFR effector pathway, i.e., the phosphoinositide-3-kinase/phosphate and tensin homologue deleted from chromosome 10 (PTEN)/alpha serine/threonine protein kinase (AKT) pathway. The aim of this study was to investigate the role of phosphoinositide-3-kinase catalytic alpha (PIK3CA), EGFR, and KRAS gene mutations in predicting response and survival in patients with non-small cell lung cancer (NSCLC) treated with EGFR-TKIs.

PATIENTS AND METHODS: A total of 166 patients with advanced NSCLC treated with EGFR-TKI with available archival tissue specimens were included. PIK3CA, EGFR, and KRAS mutations were analyzed using polymerase chain reaction-based sequencing.

RESULTS: EGFR mutation was detected in 25.3% of patients, PIK3CA mutation in 4.1%, and KRAS mutation in 6.7%. PIK3CA mutation correlated with shorter median time to progression (TTP) (p = 0.01) and worse overall survival (OS) (p < 0.001). EGFR mutation (p < 0.0001) correlated with favorable response to TKIs treatment and longer TTP (p < 0.0001). KRAS mutation correlated with progressive disease (p = 0.05) and shorter median TTP (p = 0.003) but not with OS. Cox multivariate analysis including histology and performance status showed that PIK3CA mutation was an independent factor to predict worse OS (p = 0.0001) and shorter TTP (p = 0.03), while KRAS mutation to predict shorter TTP (p = 0.01).

CONCLUSION: PIK3CA and KRAS mutations seem to be indicators of resistance and poor survival in patients with NSCLC treated with EGFR-TKIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app