Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.

The burgeoning demand for clean and energy-efficient fuel cell system requires electrocatalysts to deliver greater activity and selectivity. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This work reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nanostructures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and the MOR, and the highest activity is obtained at a Pt/Au molar ratio of 2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward the MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this work has demonstrated that a higher performance of ORR and the MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app