English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Enzyme replacement therapy of lysosomal storage diseases].

Extraction and purification of an acid β-glucosidase from human placenta (alglucerase) for the treatment of Gaucher disease, replaced a few years later by a recombinant enzyme (imiglucérase, Cerezyme(®)), has paved the way to the development of enzyme replacement therapies (ERT) for the treatment of lysosomal storage diseases (LSD) among which Fabry disease for which the long-term efficacy of the two currently available preparations (agalsidase alfa, Replagal(®) and Fabrazyme(®)) is still being investigated. Mucopolysaccharidosis (MPS) type I (Hurler and Scheie diseases), II (Hunter syndrome) and VI (Maroteaux-Lamy disease) also benefit from ERT using laronidase (Aldurazyme(®)), idursulfase (Elaprase(®)) and galsulfase (Naglazyme(®)), respectively. ERT reduces the hepatosplenomegaly and improves the physical and respiratory capacities of MPS patients with a globally acceptable safety profile although the possibility of infusion-associated should always be kept in mind. Alglucosidase alpha (Myozyme(®)) improves the cardiomyopathy and life expectancy of infants suffering from Pompe disease and is under evaluation for the treatment of the juvenile and adult forms of the disease. CNS involvement remains a major challenge for many LSD and innovative research and approaches are needed to address the fact that recombinant enzymes do not cross the blood-brain barrier and therefore are not expected to lead to any improvement in CNS damages, except if alternative routes such as intrathecal administration would be developed. Molecular chaperones (e.g. migalastat for Fabry disease) and inhibitors of glucosylceramide synthesis (e.g. eliglustat tartrate for Gaucher disease) are currently under investigation in various clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app