Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition

Ajaya Kumar Reka, Himabindu Kurapati, Venkata R Narala, Guido Bommer, Jun Chen, Theodore J Standiford, Venkateshwar G Keshamouni
Molecular Cancer Therapeutics 2010, 9 (12): 3221-32
Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, resistance to apoptosis, evading immune surveillance, and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here, we show that activation of peroxisome proliferator-activated receptor γ (PPAR-γ) inhibits transforming growth factor β (TGF-β)-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (troglitazone and rosiglitazone) or by a constitutively active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibits the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and matrix metalloproteases. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA-mediated knockdown of PPAR-γ, indicating that the ligand-induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA showed that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently, PPAR-γ activation prevented TGF-β-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells significantly inhibited TGF-β-induced experimental metastasis in SCID-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data show that these ligands may serve as potential therapeutic agents to inhibit metastasis.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"