Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel TRPV1 receptor antagonist JNJ-17203212 attenuates colonic hypersensitivity in rats.

This study examined the efficacy of a novel TRPV1 antagonist, JNJ-17203212, in two experimental rat models that exhibit a hypersensitive visceral motor response (VMR) to colorectal distension (CRD). In the first model, intraluminal administration of acetic acid (1% solution) into the distal colon produced an acute colonic hypersensitivity. In the second model, intraluminal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) into the distal colon produced a chronic, post-inflammatory colonic hypersensitivity 30 days post-TNBS administration. Throughout this study, colonic sensitivity was assessed via quantification of VMR to CRD in rats following a single, oral administration of JNJ-17203212 (3, 10 or 30 mg/kg) or vehicle. Intraluminal administration of acetic acid and TNBS resulted in increased VMR to CRD when compared to controls. In both groups, VMR to CRD was significantly reduced by administration of JNJ-17203212 at 30 mg/kg. The results of this study show that the selective TRPV1 antagonist, JNJ-17203212, reduces sensitivity to luminal distension in both an acute, noninflammatory and a chronic, post-inflammatory rodent model of colonic hypersensitivity. These data indicate that TRPV1 is involved in the pathogenesis of visceral hypersensitivity and that JNJ-17203212 may be a potential therapeutic agent for functional bowel disorders characterized by abdominal hypersensitivity, such as irritable bowel syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app