COMPARATIVE STUDY
JOURNAL ARTICLE

Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte

Raphaël Lugan, Marie-Françoise Niogret, Laurent Leport, Jean-Paul Guégan, François Robert Larher, Arnould Savouré, Joachim Kopka, Alain Bouchereau
Plant Journal 2010, 64 (2): 215-29
21070405
Thellungiella salsuginea, a Brassicaceae species closely related to Arabidopsis thaliana, is tolerant to high salinity. The two species were compared under conditions of osmotic stress to assess the relationships between stress tolerance, the metabolome, water homeostasis and growth performance. A broad range of metabolites were analysed by metabolic fingerprinting and profiling, and the results showed that, despite a few notable differences in raffinose and secondary metabolites, the same metabolic pathways were regulated by salt stress in both species. The main difference was quantitative: Thellungiella had much higher levels of most metabolites than Arabidopsis whatever the treatment. Comprehensive quantification of organic and mineral solutes showed a relative stability of the total solute content regardless of the species or treatment, meaning that little or no osmotic adjustment occurred under stress. The reduction in osmotic potential observed in plants under stress was found to result from a passive loss of water. Thellungiella shoots contain less water than Arabidopsis shoots, and have the ability to lose more water, which could contribute to maintain a water potential gradient between soil and plant. Significant differences between Thellungiella and Arabidopsis were also observed in terms of the physicochemical properties of their metabolomes, such as water solubility and polarity. On the whole, the Thellungiella metabolome appears to be more compatible with dehydration. Osmotic stress was also found to impact the metabolome properties in both species, increasing the overall polarity. Together, the results suggest that Thellungiella copes with osmotic stress by tolerating dehydration, with its metabolic configuration lending itself to osmoprotective strategies rather than osmo-adjustment.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21070405
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"