Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Excited-state vibrational coherence in methanol solution of Zn(II) tetrakis(N-methylpyridyl)porphyrin: charge-dependent intermolecular mode frequencies and implications for electron-transfer dynamics in photosynthetic reaction centers.

The nature of the intermolecular vibrational modes between the redox-active chromophores and the protein medium in the photosynthetic reaction center is central to an understanding of the structural origin of the quantum efficiency of the light-driven charge-separation reactions that result in storage of solar energy. In recent work on this issue, we have characterized the low-frequency vibrational coherence of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) and compared it to that from bacteriochlorophyll a in polar solution and in the small light-harvesting subunits B820 and B777. The charge-transfer character of ZnTMPyP's π* excited states afford us the opportunity to characterize how the intermolecular vibrational modes and potential with the surrounding medium are affected by the charge on the porphyrin macrocycle. The excited-state vibrational coherence observed with Q-band (S(1) state) excitation at 625 nm of ZnTMPyP in methanol solution contains dominant contributions from a pair of rapidly damped (effective damping time γ < 400 fs) components that are assigned to the hindered translational and librational porphyrin-solvent intermolecular modes. The 256 cm(-1) mean frequency of the intermolecular modes is significantly higher than that observed previously in the ground state, 79 cm(-1), with Soret-band excitation at 420 nm [Dillman et al., J. Phys. Chem. B. 2009, 113, 6127-6139]. The increased mode frequency arises from the activation of the ion-dipole and ion-induced-dipole terms in the intermolecular potential. In the ground state, the π-electron density of ZnTMPyP is mostly confined to the region of the porphyrin macrocycle. In the excited state, the π-electron density is extensively delocalized from the porphyrin out to two of the peripheral N-methylpyridyl rings, each of which carries a single formal charge. The charge-dependent terms contribute to a significant stabilization of the equilibrium geometry of the porphyrin-solvent complex in the excited state. In the photosynthetic reaction center, these terms will play an important role in trapping the charged products of the forward, charge-separation reactions, and the location of the bacteriopheophytin acceptor in a nonpolar region of the structure enhances the rate of the secondary charge-separation reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app