JOURNAL ARTICLE

Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II(60-70) peptide

Nevena Todorova, Andrew Hung, Simon M Maaser, Michael D W Griffin, John Karas, Geoffrey J Howlett, Irene Yarovsky
Physical Chemistry Chemical Physics: PCCP 2010 November 28, 12 (44): 14762-74
20938536
Using experimental and computational methods we identified the effects of mutation on the structure and dynamics of the amyloidogenic peptide apoC-II(60-70), in monomeric and oligomeric states. Methionine (Met60) substitutions to hydrophilic Gln, hydrophobic Val, and methionine sulfoxide residues were investigated and the results compared with observations of fibril formation by the wild-type, Met60Gln, Met60Val, and oxidised Met60 (oxi-Met) apoC-II(60-70) peptides. ThT fluorescence measurements showed fibril formation by all peptides, however with different kinetics. The wild-type and Met60Val peptides formed fibrils fastest, while oxi-Met and Met60Gln peptides exhibited significantly longer lag phases. Molecular dynamics simulations showed that the mutated monomers exhibited structural features consistent with fibril-forming propensity, such as β-hairpin conformation and a hydrophobic core. However, important differences to the wild-type were also noted, such as increased structural flexibility (oxi-Met and Met60Gln systems) and a broader distribution of the aromatic angle orientation, which could contribute to the different fibrillation kinetics observed in these peptides. Our results also showed that the critical nucleus size for fibril formation by apoC-II(60-70) may not be very large, since tetrameric oligomers in anti-parallel configuration were very stable within the 100 ns of simulations. The single-point mutations Met60Val and Met60Gln had no significant effect on the structural stability of the tetramer. The rate of fibril formation by apoC-II(60-70) peptides was generally much faster compared to longer apoC-II(56-76) peptides. Also, the effects of amino acid modifications on the kinetics of peptide fibril formation differ from the effects observed for apoC-II(56-76) and full-length apoC-II, suggesting that additional mechanisms are involved in fibril formation by mature apoC-II.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20938536
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"