Add like
Add dislike
Add to saved papers

Adaptive noise filtering for accurate and precise diffusion estimation in fiber crossings.

Measuring the diffusion properties of crossing fibers is very challenging due to the high number of model parameters involved and the intrinsically low SNR of Diffusion Weighted MR Images. Noise filtering aims at suppressing the noise while pertaining the data distribution. We propose an adaptive version of the Linear Minimum Mean Square Error (LMMSE) estimator to achieve this. Our filter applies an adaptive filtering kernel that is based on a space-variant estimate of the noise level and a weight consisting of the product of a Gaussian kernel and the diffusion similarity with respect to the central voxel. The experiments show that the data distribution after filtering is still Rician and that the diffusivity values are estimated with a higher precision while pertaining an equal accuracy. We demonstrate on brain data that our adaptive approach performs better than the initial LMMSE estimator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app