Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease.

OBJECTIVE: To test the hypothesis that valvular calcium deposition, pro-osteogenic signaling, and function can be altered in mice with advanced aortic valve disease.

METHODS AND RESULTS: "Reversa" mice were given a Western-type diet for 12 months and screened for the presence of aortic valve stenosis. Mice with advanced valve disease were assigned to 1 of 2 groups: (1) those with continued progression for 2 months and (2) those with regression for 2 months, in which lipid lowering was accomplished by a genetic switch. Control mice were normocholesterolemic for 14 months. Mice with advanced valve disease had massive valvular calcification that was associated with increases in bone morphogenetic protein signaling, Wnt/β-catenin signaling, and markers of osteoblastlike cell differentiation. Remarkably, reducing plasma lipids with a genetic switch dramatically reduced markers of pro-osteogenic signaling and significantly reduced valvular calcium deposition. Nevertheless, despite a marked reduction in valvular calcium deposition, valve function remained markedly impaired. Phosphorylated Smad2 levels and myofibroblast activation (indexes of profibrotic signaling) remained elevated.

CONCLUSIONS: Molecular processes that contribute to valvular calcification and osteogenesis remain remarkably labile during the end stages of aortic valve stenosis. Although reductions in valvular calcium deposition were not sufficient to improve valvular function in the animals studied, these findings demonstrate that aortic valve calcification is a remarkably dynamic process that can be modified therapeutically, even in the presence of advanced aortic valve disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app