Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors.

Adoptive transfer of antigen-specific CD8+ T cells can effectively treat patients with metastatic melanoma. Recent efforts have emphasized the in vitro generation of antitumor T cells by transduction of genes encoding antitumor T-cell receptors. At present, lentiviral vector-mediated transduction of CD8+ T cells relies on anti-CD3/CD28 bead stimulation; however, this method fails to efficiently expand CD8+ T cells. Herein we sought to establish a methodology for lentiviral vector transduction using optimal activating agents for efficient gene delivery and robust expansion of CD8+ T cells. To overcome the inability of anti-CD3/CD28 beads to efficiently expand CD8+ T cells, we evaluated alternative activating agents including feeder cells from allogeneic peripheral blood mononuclear cells and plate-bound anti-CD3 antibody. Analyses of gene transfer, cell phenotype, fold expansion, and biologic activities were used to determine the optimal methodology. Plate-bound anti-CD3 provided an ideal activation platform that afforded optimal lentiviral vector-mediated gene transfer efficiency (up to 90%), and coupled with peripheral blood mononuclear cells feeder cells yielded up to 600-fold expansion of CD8+ T cells within 12 days. The T-cell antigen receptor (TCR) engineered CD8+ T cells conferred specific antitumor activity and many displayed a central memory-like phenotype. The methodology described here could be readily applied for engineering CD8+ T cells with antitumor specificity for human adoptive immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app