Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biodegradation characteristics of starch-polystyrene loose-fill foams in a composting medium.

The structures and biodegradabilities of loose-fill foams, containing starch and polystyrene at ratios of 70:30 and 80:20, were evaluated using a laboratory composting system. Each formulation was foamed (extrusion expanded) using either 0.2% azodicarbonamide or 0.25% citric acid as the chemical blowing agent. Biodegradability, a measure of the quantity of material mineralized, was expressed as the percentage of CO(2) in the exhaust gas eluted from the individual chambers. The CO(2) generation peaked after about 15 days of composting, and then decreased. The rate and amount of CO(2) eluted depended on the starch content in the foams. Similarly, there were significant differences in the rates and quantities of CO(2) emissions for the foams blown with azodicarbonamide versus citric acid. At the end of the composting tests, the remaining foam material had fibrous and crumbly textures, presumably consisting primarily of polystyrene. FTIR and NMR spectra of the foams, taken after 39days of composting, did not reveal the spectral features of starch, thereby confirming the decomposition of the starch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app