Extracorporeal CO2 removal

Pier Paolo Terragni, Alberto Birocco, Chiara Faggiano, V Marco Ranieri
Contributions to Nephrology 2010, 165: 185-196
The extracorporeal carbon dioxide removal (ECCO(2)R) concept, used as an integrated tool with conventional ventilation, plays a role in adjusting respiratory acidosis consequent to tidal volume (Vt) reduction in a protective ventilation setting. This concept arises from the extracorporeal membrane oxygenation (ECMO) experience. Kolobow and Gattinoni were the first to introduce extracorporeal support, with the intent to separate carbon dioxide removal from oxygen uptake; they hypothesized that to allow the lung to 'rest' oxygenation via mechanical ventilation could be dissociated from decarboxylation via extracorporeal carbon dioxide removal. Carbon dioxide is removed by a pump-driven modified ECMO machine with veno-venous bypass, while oxygenation is accomplished by high levels of positive end-expiratory pressure, with a respiratory rate of 3-5 breaths/min. The focus was that, in case of acute respiratory failure, CO(2) extraction facilitates a reduction in ventilatory support and oxygenation is maintained by simple diffusion across the patient's alveoli, called 'apneic oxygenation'. Concerns have been raised regarding the standard use of extracorporeal support because of the high incidence of serious complications: hemorrhage; hemolysis, and neurological impairments. Due to the negative results of a clinical trial, the extensive resources required and the high incidence of side effects, low frequency positive pressure ventilation ECCO(2)R was restricted to a 'rescue' therapy for the most severe case of acute respiratory distress syndrome (ARDS). Technological improvement led to the implementation of two different CO(2) removal approaches: the iLA called 'pumpless arteriovenous ECMO' and the veno-venous ECCO(2)R. They enable consideration of extracorporeal support as something more than mere rescue therapy; both of them are indicated in more protective ventilation settings in case of severe ARDS, and as a support to the spontaneous breathing/lung function in bridge to lung transplant. The future development of more and more efficient devices capable of removing a substantial amount of carbon dioxide production (30-100%) with blood flows of 250-500 ml/min is foreseeable. Moreover, in the future ARDS management should include a minimally invasive ECCO(2)R circuit associated with noninvasive ventilation. This would embody the modern mechanical ventilation philosophy: avoid tracheal tubes; minimize sedation, and prevent ventilator-induced acute lung injury and nosocomial infections.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"