Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biodegradation and adsorption of antibiotics in the activated sludge process.

The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app