Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels Ca V 1.3 and Ca V 1.2.

L-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit. Recently, it was shown that Ca(V)1.3 Ca(2+) channels underlie autonomous pacemaking in adult dopaminergic neurons in the substantia nigra pars compacta, and this reliance renders them sensitive to toxins used to create animal models of Parkinson's disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca(2+) and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective Ca(V)1.3 channel antagonists are required. In an attempt to identify potent and selective antagonists of Ca(V)1.3 channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed Ca(V)1.2 and Ca(V)1.3 channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most Ca(V)1.3 selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both Ca(V)1.2 and Ca(V)1.3 channels and suggests that other classes of compounds need to be identified for Ca(V)1.3 selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app