Add like
Add dislike
Add to saved papers

(Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells.

Magnetic resonance imaging (MRI) is emerging as a powerful tool for in vivo noninvasive tracking of magnetically labeled stem cells. In this work, we present an efficient cell-labeling approach using (carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles (CMCS-SPIONs) as contrast agent in MRI. The CMCS-SPIONs were prepared by conjugating (carboxymethyl)chitosan to (3-aminopropyl)trimethoxysilane-treated SPIONs. These nanoparticles were internalized into human mesenchymal stem cells (hMSCs) via endocytosis as confirmed by Prussian Blue staining and electron microscopy investigation and quantified by inductively coupled plasma mass spectrometry. A MTT assay of the labeled cells showed that CMCS-SPIONs did not possess significant cytotoxicity. In addition, the osteogenic and adipogenic differentiations of the hMSCs were not influenced by the labeling process. The in vitro detection threshold of cells after incubation with 0.05 mg/mL of CMCS-SPIONs for 24 h was estimated to be about 40 cells. The results from this study indicate that the biocompatible CMCS-SPIONs show promise for use with MRI in visualizing hMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app