Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity

Alexander A Kanapin, Nicola Mulder, Vladimir A Kuznetsov
BMC Genomics 2010, 11 Suppl 1: S4

UNLABELLED: We consider the problem of biological complexity via a projection of protein-coding genes of complex organisms onto the functional space of the proteome. The latter can be defined as a set of all functions committed by proteins of an organism. Alternative splicing (AS) allows an organism to generate diverse mature RNA transcripts from a single mRNA strand and thus it could be one of the key mechanisms of increasing of functional complexity of the organism's proteome and a driving force of biological evolution. Thus, the projection of transcription units (TU) and alternative splice-variant (SV) forms onto proteome functional space could generate new types of relational networks (e.g. SV-protein function networks, SFN) and lead to discoveries of novel evolutionarily conservative functional modules. Such types of networks might provide new reliable characteristics of organism complexity and a better understanding of the evolutionary integration and plasticity of interconnection of genome-transcriptome-proteome functions.

RESULTS: We use the InterPro and UniProt databases to attribute descriptive features (keywords) to protein sequences. UniProt database includes a controlled and curated vocabulary of specific descriptors or keywords. The keywords have been assigned to a protein sequence via conserved domains or via similarity with annotated sequences. Then we consider the unique combinations of keywords as the protein functional labels (FL), which characterize the biological functions of the given protein and construct the contingency tables and graphs providing the projections of transcription units (TU) and alternative splice-variants (SV) onto all FL of the proteome of a given organism. We constructed SFNs for organisms with different evolutionary history and levels of complexity, and performed detailed statistical parameterization of the networks.

CONCLUSIONS: The application of the algorithm to organisms with different evolutionary history and level of biological complexity (nematode, fruit fly, vertebrata) reveals that the parameters describing SFN correlate with the complexity of a given organism. Using statistical analysis of the links of the functional networks, we propose new features of evolution of protein function acquisition. We reveal a group of genes and corresponding functions, which could be attributed to an early conservative part of the cellular machinery essential for cell viability and survival. We identify and provide characteristics of functional switches in the polyform group of TUs in different organisms. Based on comparison of mouse and human SFNs, a role of alternative splicing as a necessary source of evolution towards more complex organisms is demonstrated. The entire set of FL across many organisms could be used as a draft of the catalogue of the functional space of the proteome world.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"