Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images

Michalis Mazonakis, Elias Grinias, Konstantin Pagonidis, George Tziritas, John Damilakis
Physics in Medicine and Biology 2010 February 21, 55 (4): 1127-40
The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 +/- 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 +/- 7.2 ml, 3.0 +/- 5.2 ml, -0.6 +/- 4.3% and -6.2 +/- 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"