Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Propofol protects against hydrogen peroxide-induced oxidative stress and cell dysfunction in human umbilical vein endothelial cells.

Propofol has been reported to protect vascular endothelial cells against oxidative stress and dysfunction, but the underlying mechanisms are not clear. In this study, we studied hydrogen peroxide (H(2)O(2))-induced oxidative stress and cell dysfunction in human umbilical vein endothelial cells (HUVECs) and especially, their modulation by propofol. HUVECs were treated with different concentrations (0.1 and 0.5 mM) of H(2)O(2) for different times (1, 3, and 6 h). Then HUVECs were pretreated with different concentrations of propofol (10, 25, and 50 microM), followed by H(2)O(2) treatment (0.5 mM, 3 h). In another set of experiments, we pretreated cells with p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, followed by H(2)O(2) treatment (0.5 mM, 3 h). After treatment, oxidative stress, p38 MAPK phosphorylation, transcription factor NF-kappaB activation, nitric oxide synthase (NOS) expression, nitric oxide (NO) production, and monocyte adhesion were measured. We observed H(2)O(2) treatment significantly induced oxidative stress, which could be attenuated by 25 microM propofol pretreatment. In addition, H(2)O(2) treatment significantly induced p38 MAPK phosphorylation, NF-kappaB activation, NOS expression, and NO production. More importantly, our study showed these H(2)O(2)-induced changes were attenuated by propofol or SB203580 pretreatment. Further, we measured monocyte adhesion as a marker of endothelial cell dysfunction. H(2)O(2) increased the adhesion of monocytes to HUVECs, and propofol pretreatment reduced the adhesion in a fashion similar to SB203580. We concluded that propofol, by inhibiting p38 MAPK and NF-kappaB activity, decreasing NOS expression, reducing NO production, could protect HUVECs which are exposed to oxidative stress and becoming dysfunctional.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app