Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Upregulation of casein kinase 1epsilon in dorsal root ganglia and spinal cord after mouse spinal nerve injury contributes to neuropathic pain.

BACKGROUND: Neuropathic pain is a complex chronic pain generated by damage to, or pathological changes in the somatosensory nervous system. Characteristic features of neuropathic pain are allodynia, hyperalgesia and spontaneous pain. Such abnormalities associated with neuropathic pain state remain to be a significant clinical problem. However, the neuronal mechanisms underlying the pathogenesis of neuropathic pain are complex and still poorly understood. Casein kinase 1 is a serine/threonine protein kinase and has been implicated in a wide range of signaling activities such as cell differentiation, proliferation, apoptosis, circadian rhythms and membrane transport. In mammals, the CK1 family consists of seven members (alpha, beta, gamma1, gamma2, gamma3, delta, and epsilon) with a highly conserved kinase domain and divergent amino- and carboxy-termini.

RESULTS: Preliminary cDNA microarray analysis revealed that the expression of the casein kinase 1 epsilon (CK1epsilon) mRNA in the spinal cord of the neuropathic pain-resistant N- type Ca2+ channel deficient (Cav2.2-/-) mice was decreased by the spinal nerve injury. The same injury exerted no effects on the expression of CK1epsilon mRNA in the wild-type mice. Western blot analysis of the spinal cord identified the downregulation of CK1epsilon protein in the injured Cav2.2-/- mice, which is consistent with the data of microarray analysis. However, the expression of CK1epsilon protein was found to be up-regulated in the spinal cord of injured wild-type mice. Immunocytochemical analysis revealed that the spinal nerve injury changed the expression profiles of CK1epsilon protein in the dorsal root ganglion (DRG) and the spinal cord neurons. Both the percentage of CK1epsilon-positive neurons and the expression level of CK1epsilon protein were increased in DRG and the spinal cord of the neuropathic mice. These changes were reversed in the spinal cord of the injured Cav2.2-/- mice. Furthermore, intrathecal administration of a CK1 inhibitor IC261 produced marked anti-allodynic and anti-hyperalgesic effects on the neuropathic mice. In addition, primary afferent fiber-evoked spinal excitatory responses in the neuropathic mice were reduced by IC261.

CONCLUSIONS: These results suggest that CK1epsilon plays important physiological roles in neuropathic pain signaling. Therefore CK1epsilon is a useful target for analgesic drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app