Add like
Add dislike
Add to saved papers

Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions.

Biomacromolecules 2010 January 12
Critical conditions for coacervation of poly(dimethyldiallylammonium chloride) (PDADMAC) with bovine serum albumin were determined as a function of ionic strength, pH, and protein/polyelectrolyte stoichiometry. The resultant phase boundaries, clearly defined with this narrow molecular weight distribution PDADMAC sample, showed nonmonotonic ionic strength dependence, with the pH-induced onset of coacervation (at pH(phi)) occurring most readily at 20 mM NaCl. The corresponding onset of soluble complex formation, pH(c), determined using high-precision turbidimetry sensitive to changes of less than 0.1% transmittance units, mirrored the ionic strength dependence of pH(phi). This nonmonotonic binding behavior is attributable to simultaneous screening of short-range attraction and long-range repulsion. The similarity of pH(c) and pH(phi) was explained by the effect of salt on protein binding, and consequently on the number of bound proteins relative to that required for charge neutralization of the complex, a requirement for phase separation. Expansion of the coacervation regime with chitosan, a polycation with charge spacing similar to that of PDADMAC, could be due to either the charge mobility or chain stiffness of the former. The pH(phi) versus I phase boundary for PDADMAC correctly predicted entrance into and egress from the coacervation region by addition of either salt or water. The ability to induce or suppress coacervation via protein/polyelectrolyte stoichiometry r was found to be consistent with the proposed model. The results indicate that the conjoint effects of I, r, and pH on coacervation could be represented by a three-dimensional phase boundary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app