Add like
Add dislike
Add to saved papers

Oxygen adsorption on beta-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics.

The adsorption dynamics of atomic oxygen on a model beta-cristobalite silica surface has been studied by combining ab initio electronic structure calculations with a molecular dynamics semiclassical approach. We have evaluated the interaction potential of atomic and molecular oxygen interacting with an active Si site of a model beta-cristobalite surface by performing DFT electronic structure calculations. As expected, O is strongly chemisorbed, E(b) = 5.57 eV, whereas molecular oxygen can be weakly adsorbed with a high-energy barrier to the adsorption state of approximately 2 eV. The binding energies calculated for silica clusters of different sizes have revealed the local nature of the O,O(2)-silica interaction. Semiclassical collision dynamic calculations show that O is mainly adsorbed in single-bounce collisions, with a smaller probability for adsorption via a multicollision mechanism. The probability for adsorption/desorption (reflected) collisions at the three impact energies is small but not negligible at the higher energy considered in the trajectory calculations, about P(r) = 0.2 at E(kin) = 0.8 eV. The calculations give evidence of a complex multiphonon excitation-deexcitation mechanism underlying the dynamics of stable adsorption and inelastic reflection collisions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app