Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.

Molecular Therapy 2010 January
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo. In particular, peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) have recently been shown to induce widespread high levels of dystrophin expression in the mdx mouse model. Here, we report the efficiency of the PPMO-mediated exon-skipping approach in the utrophin/dystrophin double-knockout mouse (dKO) mouse, which is a much more severe and progressive mouse model of DMD. Repeated intraperitoneal (i.p.) injections of a PPMO targeted to exon 23 of dystrophin pre-mRNA in dKO mice induce a near-normal level of dystrophin expression in all muscles examined, except for the cardiac muscle, resulting in a considerable improvement of their muscle function and dystrophic pathology. These findings suggest great potential for PPMOs in systemic treatment of the DMD phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app