Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Estrogen biodegradation kinetics and estrogenic activity reduction for two biological wastewater treatment methods.

Estrogens from anthropogenic and livestock sources are a serious concern for aquatic ecosystems at concentrations less than 1 ng/L Fundamental process parameters to reduce estrogenic activity were investigated for two biotreatment methods: heterotrophic bacterial degradation in municipal activated sludge (AS) and a nitration process that is applicable to high NH4-N wastewaters. Batch tests with estrogen and nitro-estrogen compounds were conducted at nanogram per liter concentrations with mixed liquor from an AS wastewater treatment facility (WWTF) operating at a 3 day solids retention time (SRT) and a membrane bioreactor (MBR) WWTF operating at a 30-40 day SRT. The estrogenic activities of estrone (E1), 17beta-estradiol (E2), and 17alpha-ethinylestradiol (EE2) were reduced 80-97% following nitration. First-order biological degradation rate coefficients (kb) of the nitrated estrogens were 10-50% lower than the parent estrogen compounds. The kb values for EE2 in MBR and AS mixed liquors were similar, 1.67 and 1.63 L/gVSS-day respectively, indicating that the bacteria responsible for EE2 degradation were present at long and short SRTs. The kb values for E1 and E2 were 2 orders of magnitude greater than for EE2. EE2 degradation was 7.5 times faster in the presence of E1 and E2, and no effect was observed with other estrogen mixtures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app