Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences.

The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes. Fourteen different mutations of the human IGFALS gene have been identified in 17 patients, suggesting that ALS deficiency may be prevalent in a subset of patients with extraordinarily low serum levels of IGF-I and IGFBP-3 that remain abnormally low upon growth hormone stimulation. Postnatal growth was clearly affected. Commonly, the height standard deviation score before puberty was between -2 and -3, and approximately 1.4 SD shorter than the midparental height SDS. Pubertal delay was found in 50% of the patients. Circulating IGF-II, IGFBP-1, -2 and -3 levels were reduced, with the greatest reduction observed for IGFBP-3. Insulin insensitivity was a common finding, and some patients presented low bone mineral density. Human ALS deficiency represents a unique condition in which the lack of ALS proteins results in the disruption of the entire IGF circulating system. Despite a profound circulating IGF-I deficiency, there is only a mild impact on postnatal growth. The preserved expression of locally produced IGF-I might be responsible for the preservation of linear growth near normal limits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app