Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases.

The proved radio- and chemo-sensitizing capacity of genistein supports the potential use of this isoflavone in antitumour therapies. In this regard, we recently reported that genistein potentiates apoptosis induction by the anti-leukaemic agent arsenic trioxide (ATO) via reactive oxygen species (ROS) generation and p38-MAPK activation. In the present study we analyze the action of agents sharing functional similarities with the isoflavone, namely 17-beta-estradiol, the DNA topoisomerase II poison etoposide, and the tyrosine kinase (PTK) inhibitors herbimycin A, epigallocatechin-3-gallate (EGCG) and adaphostin, in U937 and other human acute myeloid leukaemia cell lines. Co-treatment with 17-beta-estradiol or etoposide failed to stimulate ROS production and potentiate ATO-provoked apoptosis, although etoposide caused G(2)/M cycle arrest, in the same manner as genistein. By contrast, all PTK inhibitors increased ATO-provoked apoptosis, with similar efficacy as genistein. Daidzein, a genistein analogue without PTK-inhibiting activity, failed to potentiate apoptosis, and co-treatment with orthovanadate attenuated the sensitizing capacity of genistein. Apoptosis potentiation by PTK inhibitors was associated to ROS over-accumulation and stimulation of p38-MAPK phosphorylation, was mimicked by conventional pro-oxidant agents (exogenous H(2)O(2) and the glutathione-depleting agent dl-buthionine-(S,R)-sulfoximine), and was attenuated by the antioxidant agent N-acetyl-l-cysteine, and by the p38-MAPK inhibitor SB203580 or p38-MAPK-directed siRNAs. On the other hand, the PTK inhibitors caused disparate effects on ERK phosphorylation, and co-treatment with the MEK/ERK inhibitor PD98059 enhanced the pro-apoptotic capacity of the PTK inhibitors. These results suggest that PTK inhibition, together with ROS generation and p38-MAPK activation, are responsible for the chemo-sensitizing action of genistein and functionally related agents in leukaemia cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app