Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells.

Lin28 and Lin28B, two developmentally regulated RNA-binding proteins and likely proto-oncogenes, selectively inhibit the maturation of let-7 family microRNAs (miRNAs) in embryonic stem cells and certain cancer cell lines. Moreover, let-7 precursors (pre-let-7) were previously found to be terminally uridylated in a Lin28-dependent fashion. Here we identify Zcchc11 (zinc finger, CCHC domain containing 11) as the 3' terminal uridylyl transferase (TUTase) responsible for Lin28-mediated pre-let-7 uridylation and subsequent blockade of let-7 processing in mouse embryonic stem cells. We demonstrate that Zcchc11 activity is UTP-dependent, selective for let-7 and recruited by Lin28. Furthermore, knockdown of either Zcchc11 or Lin28, or overexpression of a catalytically inactive TUTase, relieves the selective inhibition of let-7 processing and leads to the accumulation of mature let-7 miRNAs and repression of let-7 target reporter genes. Our results establish a role for Zcchc11-catalyzed pre-let-7 uridylation in the control of miRNA biogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app