Integrated microfluidic systems for high-performance genetic analysis

Peng Liu, Richard A Mathies
Trends in Biotechnology 2009, 27 (10): 572-81
Driven by the ambitious goals of genome-related research, fully integrated microfluidic systems have developed rapidly to advance biomolecular and, in particular, genetic analysis. To produce a microsystem with high performance, several key elements must be strategically chosen, including device materials, temperature control, microfluidic control, and sample/product transport integration. We review several significant examples of microfluidic integration in DNA sequencing, gene expression analysis, pathogen detection, and forensic short tandem repeat typing. The advantages of high speed, increased sensitivity, and enhanced reliability enable these integrated microsystems to address bioanalytical challenges such as single-copy DNA sequencing, single-cell gene expression analysis, pathogen detection, and forensic identification of humans in formats that enable large-scale and point-of-analysis applications.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"