Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Adenovirus-transduced human butyrylcholinesterase in mouse blood functions as a bioscavenger of chemical warfare nerve agents.

Molecular Pharmacology 2009 September
Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents. We have showed previously that recombinant (r) Hu BChE can be expressed at very high levels, 400 to 600 U/ml in mouse blood, by delivering the Hu BChE gene using adenovirus (Ad). Here, we report the biochemical properties of the Ad-expressed full-length and truncated rHu BChE in mouse blood. The molecular sizes of the full-length rHu BChE subunit and its oligomers were similar to those of native Hu BChE, although only a small portion of the full-length rHu BChE subunit underwent assembly into dimers and tetramers. As expected, Ad containing the truncated Hu BChE gene transduced the expression of monomeric rHu BChE only. Compared with 415 U of rHu BChE per milliliter in blood, tissues including liver, lung, heart, brain, kidney, muscle, intestine, diaphragm, salivary gland, and fat expressed <10 U/g of rHu BChE activity. Ad-expressed rHu BChE in mouse blood neutralized soman and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate at rates similar to those of native Hu BChE and rHu BChE expressed in vitro. Because the expression of rHu BChE rapidly decreased 6 days after virus administration, sera were assayed for the presence of anti-Hu BChE antibodies. Anti-Hu BChE antibodies were detected on day 7 and in increased amounts thereafter, which coincided with the loss of Hu BChE expression in sera. In conclusion, the delivery of Hu BChE gene using Ad can be a promising strategy that can provide protection against multiple lethal doses of chemical warfare nerve agents in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app