Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment.

Biochemistry 2009 June 10
The influence of membrane environment on human cannabinoid 1 (hCB(1)) receptor transmembrane helix (TMH) conformational dynamics was investigated by solid-state NMR and site-directed spin labeling/EPR with a synthetic peptide, hCB(1)(T377-E416), corresponding to the receptor's C-terminal component, i.e., TMH7 and its intracellular alpha-helical extension (H8) (TMH7/H8). Solid-state NMR experiments with mechanically aligned hCB(1)(T377-E416) specifically (2)H- or (15)N-labeled at Ala380 and reconstituted in membrane-mimetic dimyristoylphosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) bilayers demonstrate that the conformation of the TMH7/H8 peptide is more heterogeneous in the thinner DMPC bilayer than in the thicker POPC bilayer. As revealed by EPR studies on hCB(1)(T377-E416) spin-labeled at Cys382 and reconstituted into the phospholipid bilayers, the spin label partitions actively between hydrophobic and hydrophilic environments. In the DMPC bilayer, the hydrophobic component dominates, regardless of temperature. Mobility parameters (DeltaH(0)(-1)) are 0.3 and 0.73 G for the peptide in the DMPC or POPC bilayer environment, respectively. Interspin distances of doubly labeled hCB(1)(T377-E416) peptide reconstituted into a TFE/H(2)O mixture or a POPC or DMPC bilayer were estimated to be 10.6 +/- 0.5, 16.8 +/- 1, and 11.6 +/- 0.8 A, respectively. The extent of coupling (>or=50%) between spin labels located at i and i + 4 in a TFE/H(2)O mixture or a POPC bilayer is indicative of an alpha-helical TMH conformation, whereas the much lower coupling (14%) when the peptide is in a DMPC bilayer suggests a high degree of peptide conformational heterogeneity. These data demonstrate that hCB(1)(T377-E416) backbone dynamics as well as spin-label rotameric freedom are sensitive to and altered by the peptide's phospholipid bilayer environment, which exerts a dynamic influence on the conformation of a TMH critical to signal transmission by the hCB(1) receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app